Synthesis of the Fe3O4@SiO2@SiO2-Tb(PABA)3 luminomagnetic microspheres.

نویسندگان

  • De-Hui Sun
  • Ping Lu
  • Ji-Lin Zhang
  • Yan-Lin Liu
  • Jia-Zuan Ni
چکیده

In this paper, we describe the synthesis and characterization of a luminomagnetic microspheres with core-shell structures (denoted as Fe3O4@ SiO2 @SiO2-Tb(PABA)3). The luminomagnetic microspheres were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and photoluminescence spectrophotometer (PL). The SEM observation shows that the microsphere consists of the magnetic core with about 400 nm in average diameter and silica shell doped with terbium complex with an average thickness of about 90 nm. It has a saturation magnetization of 15.8 emu/g and a negligible coercivity at room temperature and exhibits strong green emission peak from 5D4 --> 7F5 transition of Tb3+ ions. The luminomagnetic microspheres with good magnetic response and fluorescence probe property as well as water-dispersibility would have potential medical applications, such as time-resolved fluoroimmunoassay (TR-FIA), fluorescent imaging, and magnetic resonance imaging (MRI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamide-co-acrylic acid)-Grafted Hollow Fe3O4/SiO2 Microspheres with Surface Holes for BSA Release

Thermoresponsive P(NIPAM-AA)/Fe3O4/SiO2 microspheres with surface holes serving as carriers were prepared using p-Fe3O4/SiO2 microspheres with a thermoresponsive copolymer. The p-Fe3O4/SiO2 microspheres was obtained using a modified Pickering method and chemical etching. The surface pore size of p-Fe3O4/SiO2 microspheres was in the range of 18.3 nm~37.2 nm and the cavity size was approximately ...

متن کامل

Facile synthesis of folate-conjugated magnetic/fluorescent bifunctional microspheres

In this paper, we investigated the functional imaging properties of magnetic microspheres composed of magnetic core and CdTe quantum dots in the silica shell functionalized with folic acid (FA). The preparation procedure included the preparation of chitosan-coated Fe3O4 nanoparticles (CS-coated Fe3O4 NPs) prepared by a one-pot solvothermal method, the reaction between carboxylic and amino group...

متن کامل

Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

متن کامل

Synthesis of size-controlled Fe3O4@SiO2 magnetic nanoparticles for nucleic acid analysis.

We present a systematic study on the preparation, characteration and potential application of Fe3O4 and Fe3O4@SiO2 nanoparticles. Fe3O4 nanoparticles of controllable diameters were successfully synthesized by solvothermal system with tuning pH. The magnetic properties of nanoparticles were measured by vibration sample magnetometer. Fe3O4@ SiO2 nanoparticles were obtained via classic Stöber proc...

متن کامل

Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions.

Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 11 11  شماره 

صفحات  -

تاریخ انتشار 2011